On rank-critical matrix spaces
نویسندگان
چکیده
منابع مشابه
compactifications and function spaces on weighted semigruops
chapter one is devoted to a moderate discussion on preliminaries, according to our requirements. chapter two which is based on our work in (24) is devoted introducting weighted semigroups (s, w), and studying some famous function spaces on them, especially the relations between go (s, w) and other function speces are invesigated. in fact this chapter is a complement to (32). one of the main fea...
15 صفحه اولOn Spaces of Matrices Containing a Nonzero Matrix of Bounded Rank
Let Mn(R) and Sn(R) be the spaces of n × n real matrices and real symmetric matrices respectively. We continue to study d(n, n − 2,R): the minimal number such that every -dimensional subspace of Sn(R) contains a nonzero matrix of rank n−2 or less. We show that d(4, 2,R) = 5 and obtain some upper bounds and monotonicity properties of d(n, n − 2,R). We give upper bounds for the dimensions of n − ...
متن کاملHigher rank numerical ranges of rectangular matrix polynomials
In this paper, the notion of rank-k numerical range of rectangular complex matrix polynomials are introduced. Some algebraic and geometrical properties are investigated. Moreover, for ϵ > 0; the notion of Birkhoff-James approximate orthogonality sets for ϵ-higher rank numerical ranges of rectangular matrix polynomials is also introduced and studied. The proposed denitions yield a natural genera...
متن کاملOrthogonal Rank-One Matrix Pursuit for Low Rank Matrix Completion
In this paper, we propose an efficient and scalable low rank matrix completion algorithm. The key idea is to extend orthogonal matching pursuit method from the vector case to the matrix case. We further propose an economic version of our algorithm by introducing a novel weight updating rule to reduce the time and storage complexity. Both versions are computationally inexpensive for each matrix ...
متن کاملDistributions on matrix moment spaces
In this paper we define distributions on the moment spaces corresponding to p×p real or complex matrix measures on the real line with an unbounded support. For random vectors on the unbounded matricial moment spaces we prove the convergence in distribution to the Gaussian orthogonal ensemble or the Gaussian unitary ensemble, respectively.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Differential Geometry and its Applications
سال: 2017
ISSN: 0926-2245
DOI: 10.1016/j.difgeo.2017.08.002